

接続エレメント ClipLam

スライドインライン|産業用コネクタ

JP

STÄUBLI ELECTRICAL CONNECTORS

鍵となるコネクタ

Stäubliは、電気コネクタ・流体コネクタ・産 業用ロボット・繊維機械の4事業部で組織さ れ、グローバルに展開するテクノロジー・リー ダーとして革新的なメカトロニクス・ソリュー ションを提供しています。Stäubli Electrical Connectorsは、高い信頼性を誇るコンタク ト技術であるMULTILAMに基づいた先進の

コネクタ・ソリューションを開発しています。 我々は鍵となるコネクタを創造していますが、 その中心には常に顧客が存在します。強固で 安定したパートナーシップが直接的にお互い の成功へと繋がっていくのだと確信していま

我々はパートナーのニーズを汲み取り、最も

困難とされる課題にも対処してきました。その 結果、最高レベルの生産性と安全性が求めら れる市場において、顧客との密接な協力のも と、信頼性に優れた上に長く使える製品を絶 えず創造し、販売し、サポートすることができ るのです。

信頼性が高く安全なコネクタ実現に向けた 協業

顧客が我々の製品開発に対して、大いに期待 を寄せていることを我々は認識しており、日々 これを実現するために切磋琢磨しております。 Stäubli Electrical Connectorsでは、高度な 専門知識、豊富な経験、そして協業各社との 様々な成功体験をもとに数多くの新開発製品 を生み出し、その後、こうした製品はグローバ ルスタンダードとなってきました。これには、今 日、太陽光発電のグローバル市場を牽引する MC4コネクタも含まれます。MC4はStäubliの

オリジナル製品であり、イノベーション、品質、 安全性を絶え間なく追求した賜物です。

また、モジュール式コネクタCombiTacや自動 充電システム用としてのクイック・チャージン グ・コネクタ(QCC) などもあります。

再生可能エネルギー、送電・配電、e-モビリテ ィから、産業用オートメーション、鉄道、溶接自 動化、検査計測、医療機器まで、幅広い業界の お客様と長年にわたる協業により、鍵となる コネクタを確立してきました。

このように、高効率の電力伝送に加え、耐用

性に優れたコンタクト技術である実績豊富な MULTILAMに基づき、信頼性、効率性、安全性 に優れたソリューションの開発に勤しんでい ます。

このように、高効率な動力伝達のみならず耐 用性にも優れた実績あるMULTILAM接触テク ノロジーに基づいた、高信頼性、高効率性、高 安全性ソリューションを開発しています。

電気接続に無限の可能性

マルチラム (MULTILAM)

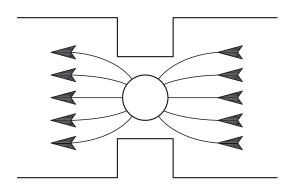
マルチラム(MULTILAM)は、特殊加工され た弾性力をもつ電気接触子です。ストーブリ (Stäubli Electrical Connectors)製品は、 その全てにおいてマルチラムが使われており、 他に類をみない卓越した性能を発揮していま

マルチラムは、弾性力により接触面を常に押 しつけることで、電気接続を途切れることなく 維持します。そのため、常に接触抵抗の低い状 態を維持します。

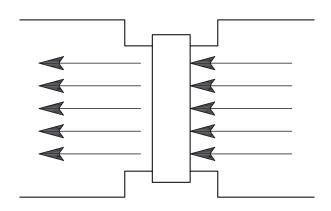
マルチラムは、どんな厳しい制約において も、100万回の着脱にも耐えうることができ、こ れを使用した製品群の中から課題解決を見出 すことができます。

こうした理由から、マルチラムは仕様要求の厳 しい条件において最も選ばれています。

- 高性能を維持するため設備全体の信頼性 が高く、長期間使用できます
- 温度、振動、衝撃に対する要求が高い場合 にも安全に使用できます
- 大電流のコネクタに特に適していますが、 データおよび信号、高電圧にも適していま
- 着脱回数が多い自動着脱システムにも対 応



ClipLam CL-Tの原理


このシステムは、2系統の二重極絶縁バスバー 間の引き出し式電気接続用に設計されていま す。MULTILAMコンタクトエレメントストリップ で構成され、様々なサイズのプラスチックフレ ームに取り付けられています。

あらかじめ銀メッキされた様々な厚さ (2 ~5mm) のバスバーに、2つのクリップで ClipLamを簡単に取り付けることができます。 電気コンタクトは、独立した電流ラインを形成 するMULTILAMによって確立されます。

これらの平行線の数が多いと、ボルト接続と比 較して電気接続の抵抗とインダクタンスが著し く減少します。

従来のソリューション(ボルト締め)

MULTILAMによる ClipLamソリューション

電気的メリット

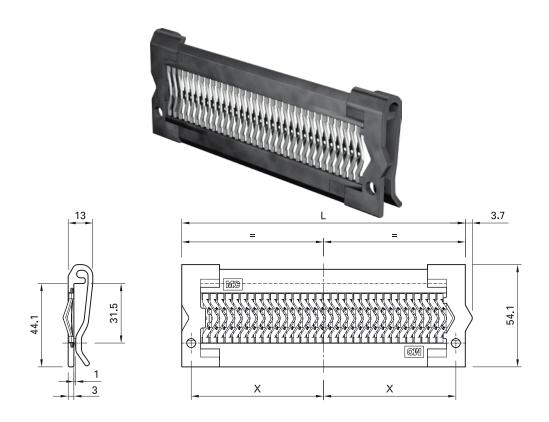
- 低い接触抵抗
- 電流ラインの直線化
- 漏れインダクタンスの低減:ボルト留めに比べて25%低減

機械的メリット

- 嵌合時のコンタクトのセルフクリーニング
- 振動や衝撃に対する高い耐性

取り付けメリット

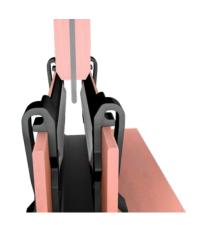
- 取り付けが簡単:穴あけや特別なカッティングは不要
- 迅速な取り付けと組み立て:ネジ不要
- インロー部底部の省スペース化
- 配線反転のリスクなし

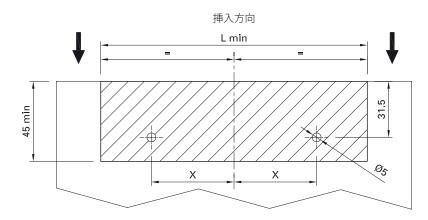

経済的メリット

- 原材料消費の削減(銅)
- 設置およびメンテナンスコストの削減
- 最適な電流配分による材料費(銅)の削減

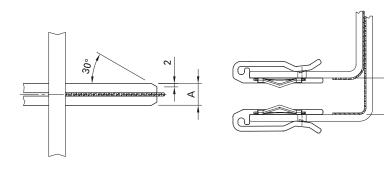
RoHS対応

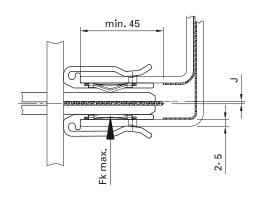
電気・電子機器における特定有害物質の使用 制限に関する指令 2002/95/EC




一般データ		寸法(mm)		機械的および電気的データリ						
オーダーNo.	14社			尼格電 消	接触抵抗	短絡電流 (1s)	短絡電流 (3s)	定格ピーク耐電流	最大保持力	スライディングカ (µr 0.35)
		L	Х	А	R _k μΩ	l _K kA	l _K kA	l _p kA	F _k N	F _g N
19.9000-54	CL-08T-54	54	22	400	50	7.2	5.6	20	90	8-16
19.9000-70	CL-12T-70	70	30	600	33	10.8	8.4	30	130	12-24
19.9000-86	CL-16T-86	86	38	800	25	14.4	11.2	40	180	16-32
19.9000-102	CL-20T-102	102	46	1000	20	18.0	14.0	50	220	20-40
19.9000-118	CL-24T-118	118	54	1200	17	21.6	16.8	60	260	24-48
19.9000-134	CL-28T-134	134	62	1400	14	25.2	19.6	70	310	28-56
19.9000-150	CL-32T-150	150	70	1600	13	28.8	22.4	80	350	32-64

¹⁾ 定格値はコンタクトに固有のものであり、銀メッキ銅バーにのみ適用されます。適切な厚さのバーを選択するための熱寸法、および ClipLamのバーの間隔をストーブリが推奨する公差内に維持するための機械寸法は、お客様の責任において行ってください。最高使用 温度120°C


バスバー上のClipLamが占める銀メッキ領域


許容公差

ВА	±0.1 mm	±0.2 mm	±0.3 mm	±0.4 mm
±0.1 mm	$B = A + 7.7 \text{ mm} / J = \pm 0.55 \text{ mm}$	$B = A + 7.6 \text{ mm} / J = \pm 0.50 \text{ mm}$	$B = A + 7.5 \text{ mm} / J = \pm 0.45 \text{ mm}$	$B = A + 7.4 \text{ mm} / J = \pm 0.40 \text{ mm}$
±0.2 mm	$B = A + 7.6 \text{ mm} / J = \pm 0.50 \text{ mm}$	$B = A + 7.5 \text{ mm} / J = \pm 0.45 \text{ mm}$	$B = A + 7.4 \text{ mm} / J = \pm 0.40 \text{ mm}$	$B = A + 7.3 \text{ mm} / J = \pm 0.35 \text{ mm}$
±0.3 mm	$B = A + 7.5 \text{ mm} / J = \pm 0.45 \text{ mm}$	$B = A + 7.4 \text{ mm} / J = \pm 0.40 \text{ mm}$	$B = A + 7.3 \text{ mm} / J = \pm 0.35 \text{ mm}$	$B = A + 7.2 \text{ mm} / J = \pm 0.30 \text{ mm}$
±0.4 mm	$B = A + 7.4 \text{ mm} / J = \pm 0.40 \text{ mm}$	$B = A + 7.3 \text{ mm} / J = \pm 0.35 \text{ mm}$	$B = A + 7.2 \text{ mm} / J = \pm 0.30 \text{ mm}$	$B = A + 7.1 \text{ mm} / J = \pm 0.25 \text{ mm}$

В

J=最大軸方向変位はバスバーの公差に依存する

● ストーブリ拠点 ○ 販売店/代理店

Global presence of the Stäubli Group

www.staubli.com

